
Army Research Laboratory

The Mechanics of Axisymmetric Indentation Revisited

by George A. Gazonas and Raymond A. Wildman

ARL-TR-6528 July 2013

Approved for public release; distribution is unlimited.



NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated
by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not returnit to the originator.



Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6528 July 2013

The Mechanics of Axisymmetric Indentation Revisited

George A. Gazonas and Raymond A. Wildman
Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

4. TITLE AND SUBTITLE 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHOR(S) 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:  
19a. NAME OF RESPONSIBLE PERSON

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98) 

Prescribed by ANSI Std. Z39.18

July 2013 Final

ARL-TR-6528

Approved for public release; distribution is unlimited.

August 2012-May 2013

The Mechanics of Axisymmetric Indentation Revisited

AH84George A. Gazonas and Raymond A. Wildman

U.S. Army Research Laboratory
ATTN: RDRL-WMM-B
Aberdeen Proving Ground, MD 21005-5069

primary author’s email:<george.a.gazonas.civ@mail.mil>

In this report, we derive new solutions to the singular integrals that appear as stress and displacement components, theJm
n

terms, in Sneddon’s solution (1) to the problem of axisymmetric indentation of an elastic half-space by a rigid flat-ended
cylindrical punch. The analytical solutions are used to verify a newly developed peridynamics numerical code (2, 3). The
peridynamic solutions for the normal and radial displacements of an elastic half-space under the action of a rigid cylindrical
punch compare well with analytical results for these fields.Principal stress and shear trajectories in the elastic half-space under
the action of a rigid cylindrical punch are determined by numerical integration of the governing equations; our resultsgenerally
compare well with Sneddon’s hand-drawn curves, but we find that Sneddon’sσ1 trajectories (4) are in error outside the
indentation region and near the surface of the half-space.

Bessel functions; Hankel transforms; complex variables; principal stress trajectories; axisymmetric
indentation; peridynamics

UU 30

George A. Gazonas

410-306-0863Unclassified Unclassified Unclassified

ii



Contents

List of Figures iv

1. Introduction 1

2. The Mechanics of Indentation 3

3. Peridynamics Code Verification 11

4. Stress Trajectories 14

5. Conclusions 17

6. References 18

Appendix. Equivalence of Sneddon’sJ1
0 Term With Our New Derivation 21

Distribution List 22

iii



List of Figures

Figure 1. Plot of theJ0
0 term given by equation 16, 19, or 20. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 8

Figure 2. Verification of our peridynamics code results (dashed lines) using the analyti-

cal solution (solid lines; equation 29) for normalized vertical displacementsuz

ǫ
in an

isotropic elastic half-space,ν = 0.2, due to a rigid flat-ended cylindrical punch; the

mean pressure induced in the half-space ispm = 4.3 GPa.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3. Verification of our peridynamics code results (dashed lines) using the analytical

solution (solid lines; equation 30) for normalized radial displacementsur

ǫ
in an isotropic

elastic half-space,ν = 0.2, due to a rigid flat-ended cylindrical punch. . . . . . . . . . . . . .. . . . . . . . . 13

Figure 4. Axisymmetric isostatics in an elastic medium,ν = 0.1679, indented by a flat-

ended cylindrical punch;σ1 stress trajectories (solid black lines),σ3 stress trajectories

(dashed black lines), and principal shear stress trajectories (orthogonal dot-dashed blue

lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



1. Introduction

The problem of axisymmetric indentation of an elastic half-space by a rigid flat-ended cylindrical

punch (the Boussinesq problem) is summarized in this report. Exact analytical solutions to

elastic indentation problems are important for verification of numerical codes capable of

modeling such phenomena (2, 3), and for modeling the onset of permanent deformation and

fracture (5), a topic of active research in the Materials and Manufacturing Sciences Division of

the U.S. Army Research Laboratory.

Boussinesq (6) and Love (7) were among the first to consider such a problem, but Sneddon (4, 8)

solved the mixed boundary value problem for the rigid flat-ended punch in cylindrical polar

coordinates by using the Hankel transform to convert the governing equation, i.e., the biharmonic

equation∇4ψ = 0, into a set of dual integral equations solvable by methods introduced by

Titchmarsh (9). The generality of Titchmarsh’s methods (9) were such that they were also used

by Busbridge (10), and Tranter (11) to derive solutions to the electrified disk problem important

in potential field theory,∇2φ = 0. Other powerful methods of analysis rely on using the

Papkovich-Neuber solution (Galerkin vector), which for body-force free axisymmetric problems

involves determining two scalar harmonic functions solvable by Hankel transforms (12). Hankel

transforms and dual integral equations have been used extensively by a number of researchers to

solve axisymmetric boundary value problems in fluid (13), poroelastic (14), piezoelectric (15),

and magnetoelectroelastic (16) media.

We focus our study on the fully three-dimensional, axisymmetric indentation problem despite the

long history of developments in the two-dimensional theoryof mixed boundary value problems,

known as Riemann-Hilbert problems, and their solution via the Plemelj (17) formulae;1

two-dimensional half-plane solutions for rigid flat punch indentation problems are decidedly

non-physical,2 since vertical surface displacements become unbounded away from the punch.

This result has been obtained by both England (21; page 70, equation (3.67)) using complex

variable methods, and Sneddon (1; page 433, equation (115)) using Fourier transform methods.

During the course of our literature survey on axisymmetric indentation, we encountered many

typographical errors or misprints of equations that have been unwittingly propagated through the

1Parton and Perlin (18) refer to these equations as the Sokhotskii-Plemelj formulae, and Gakhov (19) refers to
these equations as the Sokhotskii formulae, since Sokhotskii derived them first in his 1873 dissertation.

2Solutions to boundary value problems that are non-physicalmay be more useful for code verification than exact
physical solutions with field singularities; see, e.g., themethod of manufactured solutions in Oberkampf and Roy (20).
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literature by various authors; we have identified these errors in this report for readers interested in

such analysis. Furthermore, the original works of Sneddon(1, 4, 8) lacked analytical expressions

for the vertical displacements within the half-space region; indeed, only expressions for the

vertical displacements of the surface of the half-space aregiven,3 and we wondered why the more

general half-space solution was omitted by Sneddon. The vertical displacement solution in the

entire half-space is important for verification of numerical codes. We traced the probable cause

of the omission to the unevaluatedJ0
0 term appearing in the expression for the vertical

displacementuz.4 In general, theJm
n terms can be defined (1) by taking the imaginaryℑ part of

a Laplace transform involvingmth-order Bessel functionsJm(pρ)

Jm
n = ℑ

∫ ∞

0

pn−1e−p(ζ−i)Jm(pρ) dp . (1)

Explicit solutions to equation 1 can be obtained by taking the imaginary part of a more general

result found in Sneddon’s textbook (1; page 514, appendix A),

Jm
n = ℑ

(

2−mρm(ζ − i)−m−nΓ(m+ n) 2F̃1

(

m+ n

2
,
1

2
(m+ n+ 1);m+ 1;− ρ2

(ζ − i)2

))

, (2)

where(ρ, ζ) > 0,ℜ(m+ n) > 0, and 2F̃1 is the regularized hypergeometric function

2F̃1 = 2F1(a, b; c; z)/Γ(c). According to Watson (22; page 384), both Hankel (23) and

Gegenbauer (24) “proved thatℜ(m+ n) > 0, to secure convergence at the origin.” More direct

is the observation that for theJ0
0 term, ifm = n = 0, thenΓ(m+ n) = (m+ n− 1)! is undefined

in equation 2. We also found in the Tables of Integral Transforms from the Bateman Manuscript

Project (25; page 182, equation (5)) that a solution to the singular integral (equation 1) does not

exist form = n = 0,

Jm
0 = ℑ

∫ ∞

0

e−p(ζ−i)Jm(pρ)

p
dp = ℑ







(ζ − i)−mρm
(

1 +
√

1 + ρ2

(ζ−i)2

)−m

m






m > 0 . (3)

However, from the same work (25), one can find an explicit representation for theJ0
0 term given

3See e.g., Sneddon’s textbook (1; page 461, the equation is not numbered).
4See e.g., Sneddon’s textbook (1; page 459, equation (44)), and reproduced for convenience in equation 5 of this

report.
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on page 101, equation (17) in terms of a Fourier sine transform,

J0
0 =

∫ ∞

0

e−pζ sin(p)J0(pρ)

p
dp = sin−1

(

2
√

ζ2 + (ρ− 1)2 +
√

ζ2 + (ρ+ 1)2

)

. (4)

Thus, a formal relationship should be derivable between thesolution forJ0
0 given in equation 4

and equation 3 evaluated atm = 0; we derive such a relationship in this report through

application of L’Hôpital’s rule to equation 3. In fact, we derive new expressions for all theJm
n

terms that appear as stress and displacement components in Sneddon’s solution to the

axisymmetric indentation problem (1). The new analytical solutions are used to verify our

peridynamics numerical code (2, 3), and illustrate principal stress trajectories in an elastic

half-space under the action of a rigid cylindrical punch. Sneddon’s classic textbook (1) was

published only three years before the publication of the Bateman treatise (25) so the reason why

Sneddon was not aware of, or did not publish the result given by equation 4, remains an open

question and was in fact another motivation for this research.

2. The Mechanics of Indentation

The solutions for the displacements and stresses in an elastic half-space under the action of a rigid

flat-ended cylindrical punch that appear in Sneddon’s textbook (1) are listed below:

ur = −
2µǫ

(

J1
0 − (λ+µ)

µ
ζJ1

1

)

π(λ+ 2µ)
,

uz =
2ǫ
(

(λ+µ)
λ+2µ

ζJ0
1 + J0

0

)

π
,

σz = −4µǫ (ζJ0
2 + J0

1 ) (λ+ µ)

πa(λ+ 2µ)
,

τrz = −4ζJ1
2µǫ(λ + µ)

πa(λ+ 2µ)
,

σθ = − 4J0
1λµǫ

πa(λ + 2µ)
−

4µ2ǫ
(

J1
0 − (λ+µ)

µ
ζJ1

1

)

πaρ(λ+ 2µ)
,

σr + σθ = −4µǫ (J0
1 (2λ+ µ)− ζJ0

2 (λ+ µ))

πa(λ+ 2µ)
. (5)
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In these equations, the dimensionless radial coordinateρ = r/a is the physical radial distancer

normalized by the indenter (punch) radiusa, and the dimensionless depth coordinateζ = z/a is

the physical depthz normalized by the punch radiusa. ǫ is the indentation depth, and the Lamé

parameters are given byλ andµ. The radial stressσr is not given in Sneddon’s textbook (1) but

can be derived readily by subtraction ofσθ from σr + σθ from equations 5 resulting in,

σr =
4µǫ(J1

0µ− (λ+ µ)(ρ(J0
1 − ζJ0

2 ) + ζJ1
1 ))

πaρ(λ+ 2µ)
, (6)

where theJm
n terms are defined as singular integrals involving Bessel functionsJm(pρ),

Jm
n =

∫ ∞

0

pn−1e−ζp sin(p)Jm(pρ) dp , (7)

or as Laplace transforms involving Bessel functions, i.e.,the imaginary part of the singular

integral,

Jm
n = ℑ

∫ ∞

0

pn−1e−p(ζ−i)Jm(pρ) dp . (8)

Explicit analytical expressions for a number of specializations of the integral in equation 8 can be

found in the Tables of Integral Transforms from the Bateman Manuscript Project (25; page 182;

equation (5)) for example, ifm > 0 andn = 0,

Jm
0 = ℑ

∫ ∞

0

p−1e−p(ζ−i)Jm(pρ) dp = ℑ







(ζ − i)−mρm
(

1 +
√

1 + ρ2

(ζ−i)2

)−m

m






. (9)

Thus, form = 1, equation 9 becomes

J1
0 = ℑ

(

ρ

(ζ − i) (1 +H(ρ, ζ))

)

, (10)
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where,H(ρ, ζ) =
√

1 + ρ2

(ζ−i)2
. However, form = 0, care must be taken for evaluation of the

integral in equation 9 via a limit process, i.e.,

J0
0 = lim

m→0
Jm
0 = lim

m→0

f(m)

g(m)
= lim

m→0
ℑ
(

(ζ − i)−mρm (1 +H(ρ, ζ))−m

m

)

. (11)

In evaluation of the limit in equation 11, sincef(m) = ℑ(1) = g(m) = 0 asℜ(m) → 0, and

since the limit of the ratiof ′(m)/g′(m) asℜ(m) → 0 exists, we may employ L’Hôpital’s rule for

the evaluation ofJ0
0 ,

J0
0 = lim

m→0

f(m)

g(m)
= lim

m→0

f ′(m)

g′(m)
. (12)

The derivative of the numerator and denominator of equation11 results in

J0
0 = lim

m→0

−ℑ
(

(ζ − i)−mρm (log (1 +H(ρ, ζ)) + log(ζ − i)− log(ρ)) (1 +H(ρ, ζ))−m)

1
.(13)

Thus,

J0
0 = −ℑ (log (1 +H(ρ, ζ)) + log(ζ − i)− log(ρ)) , (14)

or

J0
0 = −ℑ

(

log
(ζ − i) (1 +H(ρ, ζ))

ρ

)

. (15)

Alternatively, sincez = |z| ei arg(z), then log(z) = ln |z| + i arg(z), andℑ(log(z)) = arg(z)5

resulting in

5Multivaluedarg(z) is defined byarg(z) = {Arg (z) + 2πk : k ∈ Z}, −π < Arg (z) ≤ π .
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J0
0 = − arg

(

(ζ − i) (1 +H(ρ, ζ))

ρ

)

. (16)

A more direct means for deriving equation 16 (26), can be seen by recognizing that since

z = |z| ei arg(z) = |z| eiθ , (17)

then equation 11 can be written succinctly as

lim
m→0

ℑ
(

zm

m

)

= lim
m→0

θ|z|m sin(mθ)

mθ
= lim

m→0
θ|z|msinc(mθ) = θ = arg(z) . (18)

Interestingly, we later became aware of an expression forJ0
0 in Barquins and Maugis (27; page

355; appendix 2), who obtained it from an earlier work of Dahan6 (28), although the steps taken

for its derivation do not appear in either work. The expression that appears in Barquins and

Maugis (27) using Sneddon’s (1) notation is

J0
0 =

π

2
− tan−1









√

√

(ζ2 + ρ2 − 1)2 + 4ζ2 + ζ2 + ρ2 − 1
√
2









. (19)

Dahan (28) refers to the earlier work of Gerrard and Harrison7 (30), where in fact, an expression

for J0
0 can be extracted by specializing their general results for an anisotropic elastic half-space to

an isotropic elastic half-space under vertical displacement by a rigid, flat-ended cylindrical punch

(see e.g., pages 12, 14, and 15 of Gerrard and Harrison (30)). The expression forJ0
0 that we have

extracted from Gerrard and Harrison (30) using Sneddon’s (1) notation is

6Dahan (28) refers to his thesis (29) as a possible source for derivation, which is inaccessibleto us.
7Gerrard and Harrison (30) refer to an earlier reference from Koning (31) where we find all of

Sneddon’s (1) expressions (27) listed without reference; in addition, acorrect expression forJ0
0 =

sin−1

(
√

ζ2 + ρ2 + 1−
√

(ζ2 + ρ2 + 1)
2 − 4ρ2/(

√
2ρ)

)

appears without derivation.

6



J0
0 = sin−1

(

2
√

ζ2 + (ρ− 1)2 +
√

ζ2 + (ρ+ 1)2

)

. (20)

Equation 20 is identical to that found in the Bateman Manuscript Project (25), i.e., equation 4

herein, and subsequently found in Fabrikant (32; page 221, equation (54)). Fabrikant (33) also

applied the theory of the potential to solve a number of mixedboundary value problems in

mechanics, including the bonded/unbonded cylindrical punch problem in both isotropic and

transversely isotropic elastic media (32). Using the identity

sin−1
(

1√
x2+1

)

= π
2
− tan−1(x), x > 0 one can verify that equation 19 is identical to equation 20.

Our own result forJ0
0 , given by equation 15 or equation 16, can be shown to be equivalent to that

of Gerrard and Harrison (30) in equation 20 using an identity from Churchill’s text (34; page 62,

section 29), that relates the inverse sine function to a logarithmic function,

sin−1(z) = −i log
(√

1− z2 + iz
)

= −i log





(ζ − i)
(

1 +
√

1 + ρ2

(ζ−i)2

)

ρ



 , (21)

and if we solve equation 21 forz, we find thatz = −1+iζ
ρ

. Thus, our result in equation 16 follows

readily by simplification ofsin−1
(

−1+iζ
ρ

)

. A plot of theJ0
0 term is illustrated in figure 1.

Barquins and Maugis (27) have identified several typographical errors in the literature by noting

“...thatJ0
2 andσθ are misprinted in...” Sneddon’s paper (4), i.e., equations (3) and (16) in that

work8; we also discovered another error in the term forur appearing in equation (8) of Sneddon’s

paper9 (4); this error was also incorrectly transcribed to appendix 2, equation (34) of Barquins

and Maugis (27). These typographical errors are corrected in Sneddon’s textbook (1).

Proceeding in a similar fashion by using the results from (25; page 182, equation (7)) for

m = 1, n = 2, equation 8 becomes

8J1
0 should beJ0

1 in the first term, andJ1
2 should beJ2

1 in the last term of equation (3) in Sneddon’s paper (4); the

transcendental argumentsin
(

3(ϕ−θ)
2

)

should appear assin
(

3ϕ
2 − θ

)

in equation (16) of Sneddon’s paper (4).
9The(J1

0 − (λ+µ)
λ

ζJ1
1 ) term should appear as(J1

0 − (λ+µ)
µ

ζJ1
1 ) in equation (8) of Sneddon’s paper (4).

7
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Figure 1. Plot of theJ0
0 term given by equation 16, 19, or 20.

J1
2 = ℑ

∫ ∞

0

pe−p(ζ−i)J1(pρ) dp = ℑ( 2ρΓ
(

3
2

)

√
π (ρ2 + (ζ − i)2)3/2

) = ℑ
(

ρ

(ζ − i)3H(ρ, ζ)3

)

. (22)

Thus, using the result from the Bateman Manuscript Project (25; page 182, equation (1)) for

m = 1, n = 1, equation 8 becomes

J1
1 = ℑ

∫ ∞

0

e−p(ζ−i)J1(pρ) dp = ℑ
(

ρ

(ζ − i)2H(ρ, ζ)(H(ρ, ζ) + 1)

)

(23)

and using the result from the Bateman Manuscript Project (25; page 182, equation (1)) for

m = 0, n = 1, equation 8 becomes

J0
1 = ℑ

∫ ∞

0

e−p(ζ−i)J0(pρ) dp = ℑ
(

1

(ζ − i)H(ρ, ζ)

)

. (24)

Finally, using the result from the Bateman Manuscript Project (25; page 182, equation (2)) for

m = 0, n = 2, equation 8 becomes

8



J0
2 = ℑ

∫ ∞

0

pe−p(ζ−i)J0(pρ) dp = ℑ
(

1

(ζ − i)2H(ρ, ζ)3

)

. (25)

Our results for theJm
n terms necessary for determining the stress and displacement fields

(equations 5 and 6) in an elastic half-space under the actionof a rigid flat-ended cylindrical punch

are written succinctly as

J0
1 = ℑ

(

1

(ζ − i)H(ρ, ζ)

)

,

J0
2 = ℑ

(

1

(ζ − i)2H(ρ, ζ)3

)

,

J1
1 = ℑ

(

ρ

(ζ − i)2H(ρ, ζ)(H(ρ, ζ) + 1)

)

,

J1
2 = ℑ

(

ρ

(ζ − i)3H(ρ, ζ)3

)

,

J1
0 = ℑ

(

ρ

(ζ − i) (1 +H(ρ, ζ))

)

,

J0
0 = − arg

(

(ζ − i) (1 +H(ρ, ζ))

ρ

)

. (26)

The results summarized in equation 26 are derived using the Tables of Integral Transforms from

the Bateman Manuscript Project (25). If we use instead, Table VII. Hankel Transforms on page

528 of Sneddon’s textbook (1), we can verify the results summarized in equation 26. Usingthe

Hankel transform tables found in Sneddon’s textbook (1), however, we find that the two termsJ1
0

andJ1
1 differ in form, but are equivalent to those appearing in equation 26. These are given by

J1
0 = ℑ

(

(ζ−i)(H(ρ,ζ)−1)
ρ

)

= 1
ρ
ℑ((ζ − i)(H(ρ, ζ)− 1)) andJ1

1 = ℑ
(

H(ρ,ζ)−1
ρH(ρ,ζ)

)

= −1
ρ
ℑ
(

1
H(ρ,ζ)

)

.

OurJm
n expressions in terms of dimensionless coordinatesρ andζ differ in form, but are

equivalent10 to those given in Sneddon’s textbook11 (1) and Barquins and Maugis (27), viz.,

10We have verified this numerically, to machine precision, by comparing allJm
n terms in equation 26 and equa-

tion 27.
11All equations 27 appear originally in Sneddon’s textbook (1), except for theJ0

0 term, which appears explicitly in
Barquins and Maugis (27). TheJ1

2 term is misprinted in Sneddon’s textbook (1; page 462, equation (56)), as it omits

theρ that multiplies thesin
(

3φ
2

)

term.

9



J0
1 =

sin
(

ϕ
2

)

√
R

,

J0
2 =

r sin
(

3ϕ
2
− θ
)

R3/2
,

J1
1 =

r sin
(

θ − ϕ
2

)

ρ
√
R

,

J1
2 =

ρ sin
(

3ϕ
2

)

R3/2
,

J1
0 =

1−
√
R sin

(

ϕ
2

)

ρ
,

J0
0 =

π

2
− tan−1

(

√

ζ2 + ρ2 +R− 1√
2

)

, (27)

whereR =
√

(ρ2 + ζ2 − 1)2 + 4ζ2 as before,r2 = 1 + ζ2, ζ tan(θ) = 1, and

(ρ2 + ζ2 − 1) tan(φ) = 2ζ .

Sneddon’s solutions (equation 5) can be rewritten more succinctly using the substitution,

λ = 2µν
1−2ν

, and by normalizing the stress components by the mean pressurepm = 8µǫ(λ+µ)
πa(λ+2µ)

, and the

displacement components by the indentation depthǫ, resulting in

ur(ρ, ζ)

ǫ
=

(ζJ1
1 − (1− 2ν)J1

0 )

π(1− ν)
,

uz(ρ, ζ)

ǫ
=

(2(1− ν)J0
0 + ζJ0

1 )

π(1− ν)
,

τrz(ρ, ζ)

pm
= −ζJ

1
2

2
,

σz(ρ, ζ)

pm
= −1

2

(

ζJ0
2 + J0

1

)

,

σθ(ρ, ζ)

pm
= − 1

2ρ
[2νρJ0

1 − ζJ1
1 + (1− 2ν)J1

0 ] ,

σr(ρ, ζ)

pm
= − 1

2ρ
[J0

1ρ− ζ(ρJ0
2 − J1

1 )− (1− 2ν)J1
0 ] . (28)

Thus, the dimensionless analytical solutions for displacements and stresses in an elastic

half-space (equation 28) are functions of Poisson’s ratioν, and substantiates the choice ofν alone

10



to describe the elastic properties of the half-space in the dimensional analysis for Hertzian cone

cracks developed in Gazonas et al. (5); these equations are corroborated by those found in

Barquins and Maugis (27), with the exception of the expression forur, misprinted in both

Barquins and Maugis (27) and Sneddon (4).

3. Peridynamics Code Verification

In the previous section, we have shown how to derive a new explicit expression forJ0
0 necessary

for determining the vertical displacements in an elastic half-space (equation 28); the solution for

the vertical displacements,

uz(ρ, ζ)

ǫ
= −

2 arg
(

(ζ − i)
(

1 +
√

1 +H(ρ, ζ)
))

+ ζ
ν−1

ℑ
(

1

(ζ−i)
√

1+H(ρ,ζ)

)

π
, (29)

of the half-space is illustrated in figure 2 (solid lines), where we verify a numerical peridynamic

solution (dashed lines) at dimensionless depths,ζ = 0, ζ = 1.7, andζ = 5.4. A 100 x 100 node

grid spacing was used for all axisymmetric peridynamic simulations. The perfectly matched

layer (PML) developed by Wildman and Gazonas (3) for 2-D peridynamics, is employed in this

axisymmetric solution at finite radial and vertical distancesρ = ζ ≈ 8 within the computational

domain to simulate the zero vertical displacement condition that exists at infinity. The solution

for the radial displacements,

ur(ρ, ζ)

ǫ
=

(1− 2ν)ℑ
(

(ζ − i)
(

−1 +
√

1 +H(ρ, ζ)
))

+ ζℑ
(

1√
1+H(ρ,ζ)

)

π(ν − 1)ρ
, (30)

of the half-space is illustrated in figure 3 (solid lines), where we verify our numerical peridynamic

solution (dashed lines) at dimensionless depths,ζ = 0, ζ = 1.7, andζ = 5.4. The analytical

radial surface displacements of the half-space are generally non-monotonic and the computed

peridynamic results accurately reproduce the theoreticaltrends as a function of depth within the

half-space; we note, however, that the computed radial displacements undergo a small spatial

wrinkle atρ = 1 at the corner of the rigid punch, and we surmise that this is related to

singularities present in the stress and strain fields that may influence the non-singular

11



displacement fields. Since we do not observe such behavior atρ = 1 in the computed vertical

displacement field illustrated in figure 2, it is also possible that this is a result of a solution that

has not fully converged.

Using the theory of the potential, Fabrikant (32; page 221, equations (53) and (54)) has

independently derived analytical solutions for both the bonded and unbonded punch problem;

Fabrikant’s solutions are to within machine precision, numerically equivalent to the new solutions

uz in equation 29 andur in equation 30. The mean pressurepm = 2ǫ
πa

E
1−ν2

induced in the elastic

half-space with rigid punch radiusa = 5 mm, indentation depthǫ = 0.5 mm, Young’s modulus,

E = 65 GPa, and Poisson’s ratio,ν = 0.20 is 4.3 GPa.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

ρ

uz

ǫ

 

 

ζ = 0

ζ = 1.7

ζ = 5.4

PML

Figure 2. Verification of our peridynamics code results (dashed lines) using the
analytical solution (solid lines; equation 29) for normalized vertical
displacementsuz

ǫ in an isotropic elastic half-space,ν = 0.2, due to a
rigid flat-ended cylindrical punch; the mean pressure induced in the
half-space ispm = 4.3 GPa.
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0 2 4 6 8 10
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

ρ

ur

ǫ

ζ = 1.7

ζ = 0

ζ = 5.4

PML

Figure 3. Verification of our peridynamics code results (dashed lines) using the
analytical solution (solid lines; equation 30) for normalized radial
displacementsur

ǫ in an isotropic elastic half-space,ν = 0.2, due to a
rigid flat-ended cylindrical punch.
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4. Stress Trajectories

Stress trajectories or isostatics (principal stress directions in the planeθ = constant) for the

problem of the half-space indented by a rigid flat-ended cylindrical punch first appear in

Sneddon (4) and can be determined by solving

tan(2α) =
2τrz

σr − σz
(31)

for α inclined at anglesα andα + π/2 to the radial axis,r. Use of the auxiliary relationship in

dimensionless coordinates,tan(α) = dζ/dρ, we arrive at a differential equation for solution of

the isostatics for maximum and minimum principal stress directions in a half-space under the

action of a rigid flat-ended cylindrical punch:

dζ
dρ

= −σr − σz
2τrz

±

√

1 +

(

σr − σz
2τrz

)2

. (32)

Substitution of stress componentsσr, σz, andτrz from equation 28 into equation 32 results in

dζ
dρ

=
2ζρJ0

2 + (1− 2ν)J1
0 − ζJ1

1

2ζρJ1
2

+

√

1 +
(2ζρJ0

2 + (1− 2ν)J1
0 − ζJ1

1 )
2

4ζ2ρ2(J1
2 )

2
. (33)

To determine the isostatics for the rigid punch indentationproblem, equation 33 (for theσ3
trajectory) and its negative reciprocal (for theσ1 trajectory) must be numerically integrated with a

computational software program like Mathematica 8.0 (35). The maximum shearing stress

trajectories bisect the angle made between the orthogonal principal stress trajectories, thus, one

set of maximum shearing stress trajectories can be determined from the equation

dζ
dρ

=
q − 1

q + 1
(34)

and an orthogonal set of maximum shearing stress trajectories can be determined from

14



dζ
dρ

=
q + 1

1− q
(35)

whereq is given by the right-hand side of equation 33. The isostatics and maximum shear stress

trajectories have been determined numerically using Mathematica 8.0 (35) and these curves are

illustrated in figure 4. In general, our numerically computed trajectories compare quite well with

Sneddon’s (4) hand-drawn curves, generated “by tracing two sets of curves which are at every

point tangential to the direction of the two principal stresses in the plane.” Ourσ1 trajectories

(solid black lines in figure 4), however, tend to parallel thefree surface in regions outside the

contact area, a result shown also in Barquins and Maugis (27; page 342, figure 4), whereas

Sneddon’s curves (4; page 38, figure 6) are in error, and orthogonal to the free surface in such

regions. Because our maximum shear stress trajectories (dashed lines) should intersect the free

surface, i.e. along theρ-axis at 45◦, as they do along theζ-axis, they are in error here, as we were

unable to numerically integrate equation 35 along theρ-domain in regions where the trajectories

become vertical and have undefined slope,dζ
dρ = ∞; we attempted to re-couch equation 35 in

terms of polar coordinates to eliminate the numerical singularity, but were still unable to obtain a

solution in this region.

15



0

-1

-2

-3

-4

1 2 3 4

Ζ

Ρ

Figure 4. Axisymmetric isostatics in an elastic medium,ν = 0.1679, indented by
a flat-ended cylindrical punch;σ1 stress trajectories (solid black lines),
σ3 stress trajectories (dashed black lines), and principal shear stress
trajectories (orthogonal dot-dashed blue lines).
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5. Conclusions

In this report, we have derived new expressions (equation 26) for theJm
n terms that appear as

stress and displacement components in Sneddon’s solution to the axisymmetric indentation

problem (1). The new solutions are used to verify a newly developed peridynamics numerical

code (2, 3). The analytical solutions for the normal and radial displacements of an elastic

half-space under the action of a rigid cylindrical punch compare well with the elastic

deformations from peridynamic simulations. Principal stress and shear trajectories in the elastic

half-space under the action of a rigid cylindrical punch were derived by numerical integration of

equation 33; our results generally compare well with Sneddon’s hand-drawn curves, but

Sneddon’sσ1 trajectories (4) are in error near the surface of the half-space and outside the region

of indentation.

Sneddon’s classic textbook (1) was published only three years before the publication of the

Bateman Manuscript Project treatise (25), so the reason why Sneddon was not aware of, or did

not publish, any result for theJ0
0 term, given by equation 4 (page 101, equation (17) of that

treatise), remains an open question; the omission of theJ0
0 term, and hence expressions for the

vertical displacements within the half-space, is also apparent in more recent contact mechanics

textbooks (12, 36). Finally, we derived a new expression for theJ0
0 term with a relatively

straightforward application of L’Hôspital’s rule and haveshown that it is analytically equivalent

to the results of Barquins and Maugis (27) (equation 19), Gerrard and Harrison (equation 20), and

that found in Bateman’s treatise (equation 4). The new analytical results for the remainingJm
n

terms (equation 26) compare exactly to within machine precision12 with those from Sneddon’s

textbook (1) (equation 27) for a number of half-space depthsζ and radial distancesρ.

12This result is shown analytically for theJ0
0 term in the text and analytically for theJ1

0 term in the appendix.

17



6. References

1. Sneddon, I. N.Fourier Transforms; McGraw-Hill Book Company: New York, 1951.

2. Wildman, R. A.; Gazonas, G. A.A perfectly matched layer for peridynamics in one

dimension; ARL-TR-5626; U.S. Army Research Laboratory: Aberdeen Proving Ground,

MD, 2011.

3. Wildman, R. A.; Gazonas, G. A. A perfectly matched layer for peridynamics in two

dimensions. J. Mech. Mater. Struct.2012, 7 (8-9), 765–781.

4. Sneddon, I. N. Boussinesq’s problem for a flat-ended cylinder. Math. Proc. Camb. Phil.

Soc.1946, 42, 29–39.

5. Gazonas, G. A.; McCauley, J. W.; Batyrev, I. G.; Becker, R.C.; Izvekov, S.; Jenkins, T.;

Patel, P.; Rice, B. M.; Schuster, B. E.; Weingarten, N. S.; Wildman, R. A. Multiscale

modeling of non-crystalline ceramics (glass): Final Report; ARL-TR-6353; U.S. Army

Research Laboratory: Aberdeen Proving Ground, MD, 2013.

6. Boussinesq, M. J.Applications des potentiels à l’étude de l’équilibre et du mouvement des

solides élastiques; Gauthier-Villars: Paris, 1885.

7. Love, A. Boussinesq problem for a rigid cone.Q. J. Math.1939, 10, 161–175.

8. Harding, J. W.; Sneddon, I. N. The elastic stresses produced by the indentation of the plane

surface of a semi-infinite elastic solid by a rigid punch.Proc. Camb. Phil. Soc.1945, 41,

16–26.

9. Titchmarsh, E. C.An Introduction to the Theory of Fourier Integrals; Oxford: London,

1937.

10. Busbridge, I. W. Dual integral equations.Proc. Lond. Math. Soc.1938, 44 (Part 1, Series

2), 115–129.

11. Tranter, C. J. On some dual integral equations occurringin potential problems with axial

symmetry. Q. J. Mech. Appl. Math.1950, 3 (4), 411–419.

12. Gladwell, G. M. L. Contact Problems in the Classical Theory of Elasticity; Sijthoff and

Noordhoff: Germantown, MD, 1980.

18



13. Amabili, M.; Kwak, M. K. Vibration of circular plates on afree fluid surface: Effect of

surface waves.J. Sound Vibrat.1999, 226 (3), 407–424.

14. Bo, J.; Hua, L. Vertical dynamic response of a disk on a saturated poroelastic half-space.

Soil Dyn. Earthq. Eng.1999, 18 (6), 437–443.

15. Wang, J. H.; Chen, C. Q.; Lu, T. J. Indentation responses of piezoelectric films. J. Mech.

Phys. Solids2008, 56 (12), 3331–3351.

16. Wang, J.; Li, X. Analytical solutions for the magnetoelectric effect of multilayered

magneto-electro-elastic media.Smart Mater. Struct.2008, 17 (4).

17. Muskhelishvili, N. I. Singular Integral Equations; P. Noordhoff, Ltd.: Groningen, NL,

1953.

18. Parton, V. Z.; Perlin, P. I.Integral Equations in Elasticity; Mir Publishers: Moscow, 1982.

19. Gakhov, F. D. Boundary Value Problems; Pergammon Press: Toronto, 1966.

20. Oberkampf, W. L.; Roy, C. J.Verification and Validation in Scientific

Computing; University Press: Cambridge, UK, 2010.

21. England, A. H. Complex Variable Methods in Elasticity; Wiley-Interscience: New York,

1971.

22. Watson, G. N. A Treatise on the Theory of Bessel Functions; 2nd ed.; Cambridge University

Press: London, 1966.

23. Hankel, H. Bestimmte integrale mit cylinderfunctionen. Math. Ann.1875, 8, 453–470.

24. Gegenbauer, L. B. Über einige bestimmte Integrale.Sitz. Math. Natur. Klasse Akad. Wiss.

Wien1875, 70, 433–443.

25. Erdélyi, A. Tables of Integral Transforms, vol. I; McGraw-Hill Book Company: New

York, 1954.

26. Walton, J. Department of Mathematics, Texas A&M University, College Station, TX,

personal communication, 21 May, 2013.

27. Barquins, M.; Maugis, D. Adhesive contact of axisymmetric punches on an elastic

half-space: the modified Hertz-Huber’s stress tensor for contacting spheres.J. Mec. Theor.

Appl.1982, 1 (2), 331–357.

19



28. Dahan, M. Contact between an axisymmetric punch and a semi-infinite transversely

isotropic elastic body .J. Mec. Appl.1979, 3 (3), 373–386.

29. Dahan, M. Poinçonnement élastique par une sphère d’un massif semi-infinit

transversalement isotrope (Thèse3e cycle); Gauthier-Villars: Université Paris-VI, 1975.

30. Gerrard, C. M.; Harrison, W. J.Circular loads applied to a cross-anisotropic half

space; Division of Applied Geomechanics Technical Paper No. 8: CSIRO, Australia, 1970.

31. Koning, H. Stress distribution in a homogeneous, anisotropic, elastic semi-infinite solid. In

4th Int. Conf. Soil Mech. Foundation Engng.; Vol. 1, 1957.

32. Fabrikant, V. I. Axisymmetric bonded punch problem: A complete solution.

Ingenier-Archiv1990, 60, 213–224.

33. Fabrikant, V. I. Applications of Potential Theory in Mechanics. Selection of New

Results; Kluwer: 1989.

34. Churchill, R. V. Complex Variables and Applications; 2nd ed.; McGraw-Hill Book

Company: New York, 1960.

35. Wolfram-Research,Mathematica Edition: Version 8.0; Wolfram Research: Champaign,

2010.

36. Fischer-Cripps, A. C.Introduction to Contact Mechanics; Springer: New York, 2007.

20



Appendix. Equivalence of Sneddon’sJ1
0 Term With Our New Derivation

In this appendix, we derive an analytical equivalence between Sneddon’sJ1
0 term found on page

462, equation (56) of his textbook (1) with our own derivation, viz.,

J1
0 =

1−
√
R sin

(

ϕ
2

)

ρ
= ℑ

(

ρ

(ζ − i) (1 +H(ρ, ζ))

)

= ℑ
(

(ζ − i)(H(ρ, ζ)− 1)

ρ

)

. (A-1)

Expanding the first term in equation A-1 using definitionsR =
√

(ρ2 + ζ2 − 1)2 + 4ζ2, and

(ρ2 + ζ2 − 1) tan(φ) = 2ζ yields

J1
0 =

1

ρ

(

1− 4

√

(ζ2 + ρ2 − 1)2 + 4ζ2 sin

(

1

2
tan−1

(

ρ2 + ζ2 − 1, 2ζ
)

))

, (A-2)

and the third term in equation A-1 usingH(ρ, ζ) =
√

1 + ρ2

(ζ−i)2
yields

J1
0 =

1

ρ
ℑ
(

i− ζ +
√

ρ2 + (ζ − i)2
)

. (A-3)

Expanding the term under the square root sign in equation A-3and taking the imaginary part

results in

J1
0 =

1

ρ

(

1 +
4

√

(ζ2 + ρ2 − 1)2 + 4ζ2 sin

(

1

2
arg
(

ρ2 + (ζ − i)2
)

))

. (A-4)

Expanding the arg function term in equation A-4 results in

J1
0 =

1

ρ

(

1 +
4

√

(ζ2 + ρ2 − 1)2 + 4ζ2 sin

(

1

2
tan−1

(

ζ2 + ρ2 − 1,−2ζ
)

))

, (A-5)

the required equation A-1 after factoring the minus sign outof the arctangent function.
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